CENTRIFUGATION OF NANOMETRIC SILICON CARBIDE POWDER FOR GRANULOMETRIC CLASSIFICATION
PDF

Keywords

Silicon carbide
classification
centrifugation
dispersants

How to Cite

Mallat, M. A. D., Juiz, V. M., Ribeiro, S. da S., Sá, G. M. S. de, Couto, H. J. B., & Lima, E. de S. (2024). CENTRIFUGATION OF NANOMETRIC SILICON CARBIDE POWDER FOR GRANULOMETRIC CLASSIFICATION. REVISTA FOCO, 17(6), e5094. https://doi.org/10.54751/revistafoco.v17n6-013

Abstract

In this study, researchers focused on improving the quality of SiC particles, considering their different sizes and shapes. To ensure a high-quality end product, the particles were separated into distinct granulometric fractions, with a focus on the nanometer range. The efficiency of this classification process played a crucial role in determining the quality of the final product. SiC holds significant market value, reaching US$3.3 billion in 2022. Brazil stands as one of the main producers of raw SiC, but it still relies on imports for finer granulometries needed in various industrial applications. The main objective of the research was to develop a highly efficient technique for the nanometric fractionation of silicon carbide powders. After conducting experiments, the researchers successfully obtained SiC with a diameter below 2 μm. To achieve this, multiple chemical dispersants were explored for the centrifugation process, aiming to disaggregate the solution and improve the overall yield, with sodium carbonate emerging as the most promising among the tested dispersants. By presenting these findings, the researchers contribute to advancing SiC production and its applications, especially in industries that require nanometer-sized SiC particles. The study not only enhances the quality of the final product but also reduces the country's dependence on imported carbide for industrial purposes.

https://doi.org/10.54751/revistafoco.v17n6-013
PDF

References

ACHESON, E. G. Carborundum; It’s history, manufacture and uses. the Journal of the Franklin Institute, 1893.

COSTA, E. Peneiramento de partículas finas e ultrafinas com adição de dispersantes. PhD thesis, Dissertação de mestrado. Universidade federal de Goiás–UFG, 2014.

DE SOUSA, W., dos SANTOS, C., and SECKLER, M. Separação granulométrica de nanopartículas de prata por centrifugação. Blucher Chemical Engineering Proceedings 1, 2 (2015), 6138–6145.

ESTOLANO, A. M. L., Oliveira, P. d’Amorim S. C., Silva, F. J. da ., Cruz, F. M. da ., Santos, T. F. de A., & Lima, N. B. de .. (2023). Avaliação por microscopia eletrônica e de força atômica para análise do comportamento abrasivo de compósitos com carbeto de silício. Matéria (rio De Janeiro), 28(2), e20220335. https://doi.org/10.1590/1517-7076-RMAT-2022-0335

GERMANO, P. H. P. Carbeto de Silício - Propriedades, aplicação e mercado. Universidade Federal de Minas Gerais, 2018.

GRAND VIEW RESEARCH, G. Silicon Carbide Market Size, Share and Trends Analysis Report By Product (Black and Green), By Application (Steel, Automotive, Aerospace, Military Defense), By Region, And Segment Forecasts, 2020 - 2027. Grand View Research, 2020.

HAN, J., He, Y., Liu, L., & Zhou, A. (2017). Advances in silicon carbide science and technology. Elsevier.

IZHEVSKYI, V., Genova, L., Bressiani, J., and Bressiani, A. Review Article: Silicon Carbide Structure, Properties and Processing. Cerâmica, v. 46, n. 297, 2000.

KIMOTO, T. Fundamentals of silicon carbide technology: growth, characterization, devices and applications. John Wiley & Sons, 2014.

LIMA, E. S. Sinterização do SiC com adição do compósito Al2O3 - YAG. Tese de doutorado, Instituto Militar de Engenharia, 2006.

LUZ, A. B. d., Sampaio, J. A., and França, S. C. A. Tratamento de minérios. CETEM/ MCT, 2010.

MORAIS, T. L. M. d. Inteligência competitiva a tecnologias do carbeto de silício para o setor de abrasivos. Universidade Federal de São Carlos, 2005.

PARIN, C. J. Estudo comparativo de métodos de determinação do tamanho de partícula. PhD thesis, Universidade de São Paulo, 2003.

RUMPF, H. (2020). Centrifugal Compressors in Process Industry. In Rotodynamic Pump Design. Springer, Cham.

S. BHATTACHARJEE. “DLS and zeta potential – What they are and what they are not? “. Journal of Controlled Release, volume 235, 2016, pages 337-351, ISSN 0168-3659. https://doi.org/10.1016/j.jconrel.2016.06.017.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Matheus Alex Domit Mallat, Vitor Moura Juiz, Shanely da Silva Ribeiro, Gabriella Maria Silveira de Sá, Hudson Jean Bianquini Couto, Eduardo de Sousa Lima